NTC热敏电阻简介

NTC Thermistor Introduction

Negative temperature coefficient (NTC) thermistor materials made from high purity transition metal Mn element such as Cu Ni oxide by coprecipitation milling, isostatic pressing molding after 1200-1400 ℃ high temperature sintering, combining advanced semiconductor cut, scribing process and glass sealed, epoxy process made all kinds of NTC thermistor, complete product range, high precision, good stability.
The NTC thermistor basic physical property are: resistance, B value, dissipative coefficient and time constant.
The definition is as follows:

Resistance value can be approximately expressed in the following formula:

 

                     

Among them: R1, R2 as the absolute temperature of T1, T2 resistance Ω (k);
B: B value (K)
B: B (K) :
B value reflects the resistance between two temperature change, use the following formula:


Among them: R1, R2, absolute temperature resistance (Ω) of T1, T2
Dissipative coefficient of the delta (mW / ℃) :
Refers to the dissipation coefficient thermistor the ratio of the consumption of power and environment temperature changes:

                   

Among them: W thermistor consumed power (mW)
T the temperature at which the heat balance
To ambient temperature
I through the thermistor current when temperature T
R when temperature T thermistor resistance (Ω)
Time constant tau (SEC.) :
Thermistor in zero energy state, when the environment temperature by a certain temperature to another specific mutations, time needed for temperature change 63.2%

负温度系数(NTC)热敏电阻材料由高纯度过渡金属Mn Cu Ni等元素的氧化物经共沉淀制粉、等静压成型后1200-1400℃高温烧结而成 , 结合先进的半导体切、划片工艺及玻封、环氧工艺制成各种类型NTC热敏电阻,产品种类齐全、精度高、稳定性好。

NTC 热敏电阻的基本物理物性有:电阻值、B值、耗散系数、时间常数。

其定义如下:

电 阻 值 R(kΩ)
电阻值可以近似地用如下公式表达:

 

                     
其中: R1、R2 为绝对温度下T1、T2 时的电阻值();
     BB值(K

B 值: B (K)
B
值反映了两个温度之间的电阻变化,可用下述公式计算:


其中: R1、R2 绝对温度T1、T2时的电阻值(Ω

耗 散 系 数 δmW/℃):
耗散系数是指热敏电阻消耗的功率与环境温度变化之比:

                     

其中:W    热敏电阻消耗的功率(mW
           T     热平衡时的温度
           To   周围环境温度
            I     在温度T时通过热敏电阻电流
           R    在温度T时热敏电阻的电阻值(Ω

时间常数τ (sec.)
       热敏电阻在零功率状态下,当环境温度由一个特定温度向另一个特定温度突变时, 温度变化63.2%所需时间